Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nature ; 618(7966): 799-807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316670

RESUMO

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Assuntos
Hemípteros , Proteínas de Insetos , Oryza , Defesa das Plantas contra Herbivoria , Proteínas de Plantas , Animais , Hemípteros/imunologia , Hemípteros/fisiologia , Leucina/metabolismo , Nucleotídeos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Oryza/metabolismo , Oryza/fisiologia , Defesa das Plantas contra Herbivoria/imunologia , Defesa das Plantas contra Herbivoria/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insetos/metabolismo , Autofagia
2.
Microbiol Spectr ; 9(3): e0061221, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817206

RESUMO

The corn leafhopper (Dalbulus maidis) is an important vector of maize rayado fino virus (MRFV), a positive-strand RNA (+ssRNA) marafivirus which it transmits in a persistent propagative manner. The interaction of D. maidis with MRFV, including infection of the insect and subsequent transmission to new plants, is not well understood at the molecular level. To examine the leafhopper-virus interaction, a D. maidis transcriptome was assembled and differences in transcript abundance between virus-exposed and naive D. maidis were examined at two time points (4 h and 7 days) post exposure to MRFV. The D. maidis transcriptome contained 56,116 transcripts generated from 1,727,369,026 100-nt paired-end reads from whole adult insects. The transcriptome of D. maidis shared highest identity and most orthologs with the leafhopper Graminella nigrifrons (65% of transcripts had matches with E values of <10-5) versus planthoppers Sogatella furcifera (with 23% of transcript matches below the E value cutoff) and Peregrinus maidis (with 21% transcript matches below the E value cutoff), as expected based on taxonomy. D. maidis expressed genes in the Toll, Imd, and Jak/Stat insect immune signaling pathways, RNA interference (RNAi) pathway genes, prophenoloxidase-activating system pathways, and immune recognition protein-encoding genes such as peptidoglycan recognition proteins (PGRPs), antimicrobial peptides, and other effectors. Statistical analysis (performed by R package DESeq2) identified 72 transcripts at 4 h and 67 at 7 days that were significantly responsive to MRFV exposure. Genes expected to be favorable for virus propagation, such as protein synthesis-related genes and genes encoding superoxide dismutase, were significantly upregulated after MRFV exposure. IMPORTANCE The transcriptome of the corn leafhopper, D. maidis, revealed conserved biochemical pathways for immunity and discovered transcripts responsive to MRFV-infected plants at two time points, providing a basis for functional identification of genes that either limit or promote the virus-vector interaction. Compared to other hopper species and the propagative plant viruses they transmit, D. maidis shared 15 responsive transcripts with S. furcifera (to southern rice black-streaked dwarf virus [SRBSDV]), one with G. nigrifrons (to maize fine streak virus [MFSV]), and one with P. maidis (to maize mosaic virus [MMV]), but no virus-responsive transcripts identified were shared among all four hopper vector species.


Assuntos
Hemípteros/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/virologia , Tymoviridae/fisiologia , Animais , Hemípteros/imunologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Doenças das Plantas/virologia , Transcriptoma , Tymoviridae/genética , Zea mays/virologia
3.
J Insect Sci ; 20(6)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347589

RESUMO

A molecular gut analysis technique is described to identify predators of Lygus hesperus (Knight), a significant pest of many crops. The technique is unique because it can pinpoint which life stage of the pest was consumed. Sentinel egg masses designed to mimic the endophytic egg-laying behavior of L. hesperus were marked with rabbit serum, while third instar and adult L. hesperus were marked with chicken and rat sera, respectively. Then, the variously labeled L. hesperus life stages were introduced into field cages that enclosed the native arthropod population inhabiting an individual cotton plant. After a 6-h exposure period, the predator assemblage, including the introduced and native L. hesperus population, in each cage were counted and had their gut contents examined for the presence of the variously marked L. hesperus life stages by a suite of serum-specific enzyme-linked immunosorbent assays (ELISA). The whole-plant sampling scheme revealed that Geocoris punticpes (Say) and Geocoris pallens Stal (Hemiptera: Geocoridae) and members of the spider complex were the numerically dominant predator taxa in the cotton field. The gut content analyses also showed that these two taxa appeared to be the most prolific predators of the L. hesperus nymph stage. Other key findings include that Collops vittatus (Say) (Coleoptera: Melyridae) and Solenopsis xyloni McCook (Hymenoptera: Formicidae) appear to be adept at finding and feeding on the cryptic L. hesperus egg stage, and that L. hesperus, albeit at low frequencies, engaged in cannibalism. The methods described here could be adapted for studying life stage-specific feeding preferences for a wide variety of arthropod taxa.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Hemípteros/imunologia , Comportamento Predatório , Animais , Formigas , Besouros , Ovos , Comportamento Alimentar , Ninfa/imunologia , Aranhas
4.
Front Immunol ; 11: 1596, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849541

RESUMO

In nature, plant viruses are mostly transmitted by hemipteran insects, such as aphids, leafhoppers, and whiteflies. However, the molecular mechanisms underlying the interactions between virus and insect vector are poorly known. Here, we investigate the proteomic interactions between tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae), a plant virus, and its vector whitefly (Bemisia tabaci) species complex. First, using a yeast two-hybrid system, we identified 15 candidate whitefly proteins interacting with the coat protein of TYLCV. GO and KEGG pathway analysis implicated that these 15 whitefly proteins are of different biological functions/processes mainly including metabolic process, cell motility, signal transduction, and response to stimulus. We then found that the whitefly protein tumorous imaginal discs (Tid), one of the 15 whitefly proteins identified, had a stable interaction with TYLCV CP in vitro, and the DnaJ_C domain of Tid301-499aa may be the viral binding site. During viral retention, the expression of whitefly protein Tid was observed to increase at the protein level, and feeding whiteflies with dsRNA or antibody against Tid resulted in a higher quantity of TYLCV in the whitefly body, suggesting the role of Tid in antiviral infection. Our data indicate that the induction of Tid following viral acquisition is likely a whitefly immune response to TYLCV infection.


Assuntos
Begomovirus/fisiologia , Hemípteros/metabolismo , Hemípteros/virologia , Interações Hospedeiro-Patógeno , Proteoma , Proteômica , Animais , Biologia Computacional/métodos , Hemípteros/classificação , Hemípteros/imunologia , Interações Hospedeiro-Patógeno/imunologia , Discos Imaginais , Proteínas de Insetos/metabolismo , Filogenia , Doenças das Plantas , Proteômica/métodos , RNA de Cadeia Dupla , RNA Viral , Técnicas do Sistema de Duplo-Híbrido , Carga Viral
5.
Methods ; 183: 38-42, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654749

RESUMO

During infection, RNA viruses can produce two types of virus-derived small RNAs (vsRNAs), small interfering RNA (siRNA) and microRNA (miRNA), that play a key role in RNA silencing-mediated antiviral mechanisms in various hosts by associating with different Argonaute (Ago) proteins. Ago1 has been widely identified as an essential part of the miRNA pathway, while Ago2 is required for the siRNA pathway. Thus, analysis of the interaction between vsRNAs and Ago proteins can provide a clue about which pathway the vsRNA may be involved in. In this study, using rice stripe virus (RSV)-small brown planthoppers (Laodelphax striatellus, Fallen) as an infection model, the interactions of eight vsRNAs derived from four viral genomic RNA fragments and Ago1 or Ago2 were detected via the RNA immunoprecipitation (RIP) method. vsRNA4-1 and vsRNA4-2 derived from RSV RNA4 were significantly enriched in Ago1-immunoprecipitated complexes, whereas vsRNA2-1 and vsRNA3-2 seemed enriched in Ago2-immunoprecipitated complexes. vsRNA1-2 and vsRNA2-2 were detected in both of the two Ago-immunoprecipitated complexes. In contrast, vsRNA1-1 and vsRNA3-1 did not accumulate in either Ago1- or Ago2-immunoprecipitated complexes, indicating that regulatory pathways other than miRNA or siRNA pathways might be employed. In addition, two conserved L. striatellus miRNAs were analysed via the RIP method. Both miRNAs accumulated in Ago1-immunoprecipitated complexes, which was consistent with previous studies, suggesting that our experimental system can be widely used. In conclusion, our study provides an accurate and convenient detection system to determine the potential pathway of vsRNAs, and this method may also be suitable for studying other sRNAs.


Assuntos
Proteínas Argonautas/isolamento & purificação , Hemípteros/genética , Imunoprecipitação/métodos , Insetos Vetores/genética , RNA Viral/isolamento & purificação , Animais , Proteínas Argonautas/imunologia , Proteínas Argonautas/metabolismo , Hemípteros/imunologia , Hemípteros/metabolismo , Hemípteros/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/virologia , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Oryza , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/isolamento & purificação , RNA Interferente Pequeno/metabolismo , RNA Viral/imunologia , RNA Viral/metabolismo , Tenuivirus/genética , Tenuivirus/imunologia , Tenuivirus/patogenicidade
6.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861829

RESUMO

Chitin deacetylase (CDA) is a chitin degradation enzyme that strictly catalyzes the deacetylation of chitin to form chitosan, which plays an important role in regulating growth and development, as well as the immune response. In this study, a chitin deacetylase 3 gene (CDA3) was identified with a complete open reading frame (ORF) of 1362 bp from the genome database of Diaphorina citri, encoding a protein of 453 amino acids. Spatiotemporal expression analysis suggested that D. citri CDA3 (DcCDA3) had the highest expression level in the integument and third-instar nymph stage. Furthermore, DcCDA3 expression level can be induced by 20-hydroxyecdysone (20E). Injection of Escherichia coli and Staphylococcus aureus induced the upregulation of DcCDA3 in the midgut, while DcCDA3 was downregulated in the fat body. After silencing DcCDA3 by RNA interference, there was no influence on the D. citri phenotype. In addition, bactericidal tests showed that recombinant DcCDA3 inhibited gram-positive bacteria, including S. aureus and Bacillus subtilis (B. subtilis). In conclusion, our results suggest that DcCDA3 might play an important role in the immune response of D. citri.


Assuntos
Amidoidrolases/imunologia , Hemípteros/imunologia , Proteínas de Insetos/imunologia , Amidoidrolases/química , Amidoidrolases/genética , Sequência de Aminoácidos , Animais , Antibacterianos/química , Antibacterianos/imunologia , Hemípteros/química , Hemípteros/genética , Imunidade , Proteínas de Insetos/química , Proteínas de Insetos/genética , Transcriptoma
7.
Virology ; 533: 137-144, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31247402

RESUMO

Angiotensin-converting enzyme (ACE) plays diverse roles in the animal kingdom. However, whether ACE plays an immune function against viral infection in vector insects is unclear. In this study, an ACE gene (LsACE) from the small brown planthopper was found to respond to Rice stripe virus (RSV) infection. The enzymatic activities of LsACE were characterized at different pH and temperature. Twenty planthopper proteins were found to interact with LsACE. RSV infection significantly upregulated LsACE expression in the testicle and fat body. When the expression of LsACE in viruliferous planthoppers was inhibited, the RNA level of the RSV SP gene was upregulated 2-fold in planthoppers, and all RSV genes showed higher RNA levels in the rice plants consumed by these planthoppers, leading to a higher viral infection rate and disease rating index. These results indicate that LsACE plays a role in the immune response against RSV transmission by planthoppers.


Assuntos
Hemípteros/imunologia , Hemípteros/virologia , Proteínas de Insetos/imunologia , Insetos Vetores/imunologia , Insetos Vetores/virologia , Peptidil Dipeptidase A/imunologia , Tenuivirus/fisiologia , Sequência de Aminoácidos , Animais , Hemípteros/genética , Hemípteros/fisiologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/fisiologia , Oryza/virologia , Peptidil Dipeptidase A/genética , Filogenia , Doenças das Plantas/virologia , Tenuivirus/classificação , Tenuivirus/genética , Tenuivirus/isolamento & purificação
8.
Proc Biol Sci ; 286(1897): 20182207, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963836

RESUMO

In insects, antimicrobial humoral immunity is governed by two distinct gene cascades, IMD pathway mainly targeting Gram-negative bacteria and Toll pathway preferentially targeting Gram-positive bacteria, which are widely conserved among diverse metazoans. However, recent genomic studies uncovered that IMD pathway is exceptionally absent in some hemipteran lineages like aphids and assassin bugs. How the apparently incomplete immune pathways have evolved with functionality is of interest. Here we report the discovery that, in the hemipteran stinkbug Plautia stali, both IMD and Toll pathways are present but their functional differentiation is blurred. Injection of Gram-negative bacteria and Gram-positive bacteria upregulated effector genes of both pathways. Notably, RNAi experiments unveiled significant functional permeation and crosstalk between IMD and Toll pathways: RNAi of IMD pathway genes suppressed upregulation of effector molecules of both pathways, where the suppression was more remarkable for IMD effectors; and RNAi of Toll pathway genes reduced upregulation of effector molecules of both pathways, where the suppression was more conspicuous for Toll effectors. These results suggest the possibility that, in hemipterans and other arthropods, IMD and Toll pathways are intertwined to target wider and overlapping arrays of microbes, which might have predisposed and facilitated the evolution of incomplete immune pathways.


Assuntos
Hemípteros/imunologia , Imunidade Humoral/genética , Transdução de Sinais/imunologia , Fatores de Transcrição/imunologia , Animais , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Hemípteros/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Regulação para Cima
10.
Virology ; 527: 122-131, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30500711

RESUMO

Persistent plant viruses circulate between host plants and vector insects, possibly leading to the genetic divergence in viral populations. We analyzed the single nucleotide polymorphisms (SNPs) of Rice stripe virus (RSV) when it incubated in the small brown planthopper and rice. Two SNPs, which lead to nonsynonymous substitutions in the disease-specific protein (SP) of RSV, produced three genotypes, i.e., GG, AA and GA. The GG type mainly existed in the early infection period of RSV in the planthoppers and was gradually substituted by the other two genotypes during viral transmission. The two SNPs did not affect the interactions of SP with rice PsbP or with RSV coat protein. The GG genotype of SP induced stronger immune responses than those of the other two genotypes in the pattern recognition molecule and immune-responsive effector pathways. These findings demonstrated the population variations of RSV during the circulation between the vector insect and host plant.


Assuntos
Hemípteros/imunologia , Insetos Vetores/imunologia , Oryza/virologia , Doenças das Plantas/virologia , Tenuivirus/genética , Animais , Regulação da Expressão Gênica/imunologia , Genótipo , Hemípteros/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/virologia , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , Tenuivirus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Insect Sci ; 26(5): 843-852, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29485745

RESUMO

The Asian citrus psyllid (Diaphorina citri Kuwayama) is known to exhibit abdominal color polymorphisms. In the current study, susceptibility to four insecticides was compared among orange/yellow, blue/green and gray/brown color morphs of field collected D. citri. The LD50 values and 95% fiducial limits were quantified for each insecticide and color morph combination and ranged between 0.10 ng/µL (0.06-0.10) and 6.16 ng/µL (3.30-12.50). Second, we measured the detoxification enzyme activity levels of orange/yellow, blue/green and gray/brown color morphs for cytochrome P450, glutathione S-transferase, and general esterase. The mean P450 activity (equivalent units) was significantly lower in gray/brown (0.152 ± 0.006) and blue/green morphs (0.149 ± 0.005) than in the orange/yellow morphs (0.179 ± 0.008). GST activity (µmol/min/mg protein) was significantly lower in the orange/yellow morph (299.70 ±1.24) than gray/brown (350.86 ± 1.19) and blue/green (412.25 ± 1.37) morphs. The mean EST activity (µmol/min/mg protein) was significantly higher in blue/green (416.72 ± 5.12) and gray/brown morphs (362.19 ± 4.69) than in the orange/yellow morphs (282.56 ± 2.93). Additionally, we analyzed the relative expression of assortment genes involved in cuticular melanization and basal immunity. The transcripts of Dopa Decarboxylase and Tyrosine Hydroxylase were expressed higher in blue/green and gray/brown than orange/yellow morphs. The transcription results paralleled the susceptibility of D. citri to organophosphate, neonicotinoid and pyrethroid insecticides. GST and EST activity may also be correlated with low levels of insecticide susceptibility. Cuticular melanization could be a factor for the development of resistance to insecticides among different color morphs.


Assuntos
Hemípteros/enzimologia , Hemípteros/genética , Resistência a Inseticidas/genética , Pigmentação/genética , Animais , Hemípteros/imunologia , Hemípteros/metabolismo , Imunidade Inata , Inativação Metabólica , Inseticidas/metabolismo , Polimorfismo Genético
12.
J Proteome Res ; 17(9): 2995-3011, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30106293

RESUMO

Huanglongbing (HLB), also known as citrus greening disease, is the most serious disease of citrus plants. It is associated with the Gram-negative bacterium ' Candidatus Liberibacter asiaticus' ( CLas), which is transmitted between host plants by the hemipteran insect vector Diaphorina citri in a circulative, propagative manner involving specific interactions with various insect tissues including the hemolymph, fluid that occupies the body cavity akin to insect blood. High resolution quantitative mass spectrometry was performed to investigate the effect of CLas exposure on D. citri hemolymph at the proteome level. In contrast to the broad proteome effects on hundreds of proteins and a diverse array of metabolic pathways previously reported in gut and whole insect proteome analyses, the effect of CLas on the hemolymph was observed to be highly specific, restricted to key immunity and metabolism pathways, and lower in magnitude than that previously observed in the whole insect body and gut. Vitellogenins were abundantly expressed and CLas-responsive. Gene-specific RNA expression analysis suggests that these proteins are expressed in both male and female insects and may have roles outside of reproductive vitellogenesis. Proteins for fatty acid synthesis were found to be up-regulated, along with metabolic proteins associated with energy production, supported at the organismal level by the previously published observation that D. citri individuals experience a higher level of hunger when reared on CLas-infected plants. Prediction of post-translational modifications identified hemolymph proteins with phosphorylation and acetylation upon CLas exposure. Proteins derived from the three most prominent bacterial endosymbionts of the psyllid were also detected in the hemolymph, and several of these have predicted secretion signals. A DNAK protein, the bacterial HSP70, detected in the hemolymph expressed from Wolbachia pipientis was predicted to encode a eukaryotic nuclear localization signal. Taken together, these data show specific changes to immunity and metabolism in D. citri hemolymph involving host and endosymbiont proteins. These data provide a novel context for proteomic changes seen in other D. citri tissues in response to CLas and align with organismal data on the effects of CLas on D. citri metabolism and reproduction.


Assuntos
Proteínas de Bactérias/metabolismo , Hemípteros/metabolismo , Hemolinfa/química , Proteínas de Insetos/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Rhizobiaceae/metabolismo , Acetilação , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Citrus/parasitologia , Metabolismo Energético , Ácidos Graxos , Ontologia Genética , Hemípteros/genética , Hemípteros/imunologia , Hemípteros/microbiologia , Hemolinfa/imunologia , Hemolinfa/metabolismo , Hemolinfa/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Insetos Vetores/genética , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/microbiologia , Metabolismo dos Lipídeos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Anotação de Sequência Molecular , Fosforilação , Doenças das Plantas/parasitologia , Proteoma/classificação , Proteoma/genética , Proteoma/imunologia , Proteômica/métodos , Rhizobiaceae/genética , Simbiose/genética , Simbiose/imunologia , Vitelogeninas , Wolbachia/genética , Wolbachia/metabolismo
13.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531134

RESUMO

Phytoplasmas are plant-pathogenic bacteria transmitted by hemipteran insects. The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of flavescence dorée phytoplasma (FDp). The two phytoplasmas induce different effects on this species: CYp slightly improves whereas FDp negatively affects insect fitness. To investigate the molecular bases of these different responses, transcriptome sequencing (RNA-seq) analysis of E. variegatus infected with either CYp or FDp was performed. The sequencing provided the first de novo transcriptome assembly for a phytoplasma vector and a starting point for further analyses on differentially regulated genes, mainly related to immune system and energy metabolism. Insect phenoloxidase activity, immunocompetence, and body pigmentation were measured to investigate the immune response, while respiration and movement rates were quantified to confirm the effects on energy metabolism. The activation of the insect immune response upon infection with FDp, which is not naturally transmitted by E. variegatus, confirmed that this bacterium is mostly perceived as a potential pathogen. Conversely, the acquisition of CYp, which is naturally transmitted by E. variegatus, seems to increase the insect fitness by inducing a prompt response to stress. This long-term relationship is likely to improve survival and dispersal of the infected insect, thus enhancing the opportunity of phytoplasma transmission.


Assuntos
Chrysanthemum/microbiologia , Hemípteros/imunologia , Hemípteros/microbiologia , Insetos Vetores/imunologia , Insetos Vetores/microbiologia , Phytoplasma/imunologia , Phytoplasma/patogenicidade , Animais , Interações Hospedeiro-Patógeno
14.
Virology ; 513: 52-64, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035786

RESUMO

The whitefly Bemisia tabaci can transmit hundreds of viruses to numerous agricultural crops in the world. Five genera of viruses, including Begomovirus and Crinivirus, are transmitted by B. tabaci. There is little knowledge about the genes involved in virus acquisition and transmission by whiteflies. Using a comparative transcriptomics approach, we evaluated the gene expression profiles of whiteflies (B. tabaci MEAM1) after feeding on tomato infected by a begomovirus, Tomato yellow leaf curl virus (TYLCV), in comparison to a recent study, in which whiteflies were fed on tomato infected by the crinivirus, Tomato chlorosis virus (ToCV). The data revealed similar temporal trends in gene expression, but large differences in the number of whitefly genes when fed on TYLCV or ToCV-infected tomato. Transcription factors, cathepsins, receptors, and a hemocyanin gene, which is implicated in mediating antiviral immune responses in other insects and possibly virus transmission, were some of the genes identified.


Assuntos
Begomovirus/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Hemípteros/crescimento & desenvolvimento , Hemípteros/genética , Solanum lycopersicum/parasitologia , Solanum lycopersicum/virologia , Animais , Crinivirus/crescimento & desenvolvimento , Hemípteros/imunologia , Análise de Sequência de DNA
16.
Dev Comp Immunol ; 81: 252-261, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29247722

RESUMO

Lysozyme is well-known as an immune effector in the immune system. Here we identified three genes including one c-type lysozyme, Btlysc, and two i-type lysozymes, Btlysi1 and Btlysi2, from the whitefly Bemisia tabaci. All three lysozymes were constitutively expressed in different tissues and developmental stages, but the two types of lysozymes showed different expression patterns. The expression levels of Btlysi1 and Btlysi2 were dramatically induced after the whitefly fed with different host plants while the expression level of Btlysc kept unchanged. After fungal infection and begomovirus acquisition, Btlysc expression was significantly upregulated while Btlysi1 and Btlysi2 expression were basically not induced. Furthermore, we found that Btlysc showed muramidase and antibacterial activities. Altogether, our results suggest that the two types of lysozymes act in two different ways in B. tabaci, that is, Btlysc is involved in the whitefly immune system while Btlysi1 and Btlysi2 may play a role in digestion or nutrition absorption.


Assuntos
Beauveria/imunologia , Begomovirus/imunologia , Infecções por Vírus de DNA/imunologia , Hemípteros/genética , Proteínas de Insetos/genética , Muramidase/genética , Micoses/imunologia , Isoformas de Proteínas/genética , Animais , Clonagem Molecular , Regulação da Expressão Gênica , Gossypium , Hemípteros/imunologia , Imunidade Inata , Proteínas de Insetos/metabolismo , Muramidase/metabolismo , Controle de Pragas , Isoformas de Proteínas/metabolismo , Transcriptoma
17.
Dev Comp Immunol ; 78: 83-90, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919360

RESUMO

Recently, we have reported the structural determination of antimicrobial peptides (AMPs), such as riptocin, rip-defensin, and rip-thanatin, from Riptortus pedestris. However, the biological roles of AMPs in the host midgut remain elusive. Here, we compared the expression levels of AMP genes in apo-symbiotic insects with those of symbiotic insects. Interestingly, the expression level of rip-thanatin was only significantly increased in the posterior midgut region of symbiotic insects. To further determine the role of rip-thanatin, we checked antimicrobial activity in vitro. Rip-thanatin showed high antimicrobial activity and had the same structural characteristics as other reported thanatins. To find the novel function of rip-thanatin, rip-thanatin was silenced by RNA interference, and the population of gut symbionts was measured. When rip-thanatin was silenced, the symbionts' titer was increased upon bacterial infection. These results suggest that rip-thanatin functions not only as an antimicrobial peptide but also in controlling the symbionts' titer in the host midgut.


Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Infecções por Burkholderia/imunologia , Burkholderia/fisiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Hemípteros/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Células Cultivadas , Imunidade Inata , RNA Interferente Pequeno/genética , Simbiose
18.
Sci Rep ; 7(1): 14412, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089507

RESUMO

Ozone (O3) is a major air pollutant that has a profound effect on whole ecosystems. In this study we studied how hO3 affected the transmission of the Tomato yellow leaf curl China virus (TYLCCNV), a begomovirus, by the Q biotype Bemisia tabaci in a persistent, circulative manner. We found hO3 affected the transmission of TYLCCNV via the effect of it on the microbial community of the transmitting insect, such as Candidatus Hamiltonella, Ralstonia, Diaphorobacter, Caldilineaceae, Deinococcus, Rickettsia, Thysanophora penicillioides and Wallemia ichthyophaga. We concluded that hO3 decreased the resistance of acquiring virus tomatoes, and decreased the immune response and increased the endurance to extreme environments of viruliferous whiteflies by altering the composition and abundance of the microbial environments inside the body and on the surface of whitefly, as a result, it enhanced the TYLCV transmission rate by the Q biotype whitefly.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Begomovirus , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Ozônio/efeitos adversos , Animais , Begomovirus/metabolismo , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Hemípteros/imunologia , Hemípteros/virologia , Insetos Vetores/imunologia , Insetos Vetores/virologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Microbiota/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo
19.
J Invertebr Pathol ; 148: 94-101, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28624621

RESUMO

Citrus production worldwide is currently threatened by Huanglongbing, or citrus greening disease. The associated pathogen, Candidatus Liberibacter asiaticus (CLas), is transmitted by the Asian citrus psyllid, Diaphorina citri. Annotation of the D. citri genome revealed a reduced innate immune system lacking a number of antimicrobial peptides and the Imd pathway associated with defense against Gram-negative bacteria. We characterized this apparent immune reduction in survival assays in which D. citri were exposed to Gram-negative or Gram-positive bacteria. D. citri experienced significant mortality when exposed to Serratia marcescens (Gram-negative) through oral ingestion or by septic injury. Escherichia coli (Gram-negative) also caused significant D. citri mortality, but only when inoculated at high concentrations through oral ingestion or by septic injury. Neither Micrococcus luteus (Gram-positive) or Bacillus subtilis (Gram-positive) caused significant mortality as compared to controls in any experiment. E. coli titers increased rapidly following exposure, while M. luteus titer remained stable for 72 h. We demonstrate that D. citri is capable of defending against E. coli, a Gram-negative bacterium, despite lacking the Imd defense pathway. The tolerance of D. citri to M. luteus infection, yet inability to effectively clear infections, presents questions to efficacy of D. citri immune response to effectively clear Gram-positive infections.


Assuntos
Hemípteros/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Hemípteros/microbiologia
20.
Mol Immunol ; 88: 164-173, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28648996

RESUMO

Bemisia tabaci (Gennadius) Middle East-Asia Minor 1 (MEAM1) is a well known invasive insect species. Little information is available on immune system of B. tabaci to date. In this study, one of the Toll-like receptors (TLR; namely BtToll) was cloned in MEAM1 B. tabaci which contains an open reading frame of 3153bp, encoding putative 1050 amino acids. Phylogenetic analysis indicated that BtToll is highly identitical with other members of the TLR family. Transcripts of BtToll detected through qRT-PCR were expressed in all developmental stages of B. tabaci and the highest expression level was observed in the 3rd nymphal instar. BtToll was highly expressed in response to immune challenge. RNA interference was used to knockdown the BtToll expression in adults through the oral route which resulted in significant reduction of BtToll transcript. When the adults were challenged with a mycotoxin from entomogenous fungi - destruxin A (DA) and RNAi, the median lethal concentration (LC50) decreased by 70.67% compared to DA treatment only. Our results suggest that BtToll is an important component of the B. tabaci immune system. RNAi technology using dsToll combined with general control methods (using toxin only) can be used as a potential strategy in integrated B. tabaci management programs.


Assuntos
Infecções Bacterianas/imunologia , Depsipeptídeos/farmacologia , Hemípteros/imunologia , Imunidade Inata/genética , Micoses/imunologia , Receptores Toll-Like/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Imunidade Inata/imunologia , Dose Letal Mediana , Estrutura Secundária de Proteína , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...